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Introduction.
Let W be the variety of pairs (s,t) of symmetric nxn-matrices over k
with st = 0 , where n a non-negative integer and k a field of

characteristic zero. We define a G = GL(n,k)~action on W by

1

- t -
go(s,t) = ((gH) g™ gtg") L g€ 6 and (s,t) e W .

There is an induced action on the coordinate ring R = k[xij’Yij]/I of W,
1 <i,j<n, where I 1is the ideal generated by the elements

n

~Y. and I

I R e ) 1<¢4i,j<n,

Xiatay
given by
t -1 -1.t
gy = (g7Xe)y; and oy, = (g7 ¥ ) )y,
such that

(gf)(gw) = f(w) for all ge G, feR and weW.

Our purpose 1s to study R as G-module and to give a description of the
G-invariant (prime, primary, radical) ideals. Moreover we give an algorithm

for forming a primary decomposition for any G-invariant ideal, describe the

1993
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symbolic powers of prime ideals and describe for any G-invariant ideal the
integral closure.

Other problems of this kind are studied in [1],[2] and [3]. They have in
common that with help of certain generators and relations for R as k-module
a multiplicity free decomposition in irreducible components for R as G-

module can be obtained.

The proof in our case goes along the same line as in the case of determinantal
varieties [2]. We will use pairs of bitableaux to indicate products of minors
of X and Y and by combining straightening formulas glven in [4] and [3] we
will prove that a certain subset of standard pairs of bitableaux form a k-free
basis of R . (Here 1s i1s sufficlent to sssume that k 1s a commutative ring.)
Next we will give a multiplicity free decomposition in irreducible

components R = € M as G-module, where the sum is over all pairs of

[O,T]

diagrams [o,t] with al+1:l < n . After that we will use a lemma and the

results in [l] to describe all sets D of pairs of diagrams, the D-ideals,

(0,1] 18 an {deal and thus find all G~{nvariant ideals. In
»

order to get remaining resulte on G-invariant ideals we will translate our

such that g M

questions in terms of D-ideals and then answer them in a combinatorial way.
Now for a more geometric polnt of view, let k be an algebraic closed fleld
of characteristic zerov. The orbits of CL{n) in W are the sets

Vp a - {(s,t)c\l Irank 8 = p,rank t = q} with 0 < p,q and p+tq < n .
»

Their closures W = {(s,t)e" | rank s<p,rank t<q] are the only

-V
Psq P9
G-invariant irreducible subvarieties of W . From our results it follows that

the G-fnvariant prime ideal J of functions vanishing on W is
P o+l g+l 8 ?.q
generated by the prl-order minors of X and grl-order minors of Y . In
Proposition 2.6 we describe the ideals J(p:i a+l (the m—th symbolic power of
»
J of functions vanishing to order > m alon W .
priqrn ) : £ o

1. Combinatorics and R as G-module.

A (Young)-diagram o is a flolte subset of Z&>O * &y, such that if

(4,3) e o and L' <4, j* ¢ J then (L',4') ¢ o . Each diagram can be
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respresented by a sequence (61,62,...) or even (01,02,...,01) if o =0,

2+1

again denoted by o , where o = mx{j l(i,j)eu} (max (empty set) =0 ) ,
9 > 9, ? «os and oy = 0 for i large enough. By interchanging the factors in

ﬂ>0 X ﬂ>0 we get the dual diagram $ . The degree of o 1is ‘U' = L @

3
1>1 i

its length #(o) = ‘él = max{i| 0, #0} and for ke W Tl =z § . K
>

1>k
¥+ %= (‘31+¥1,‘52+¥2,...) = K then we write get = p ., The diagrams are partially
ordered as subsets of ZZ)O x 22>0 by the inclusion < . A second fimer partial order
is given by o < t 1iff Yk(c) < Yk(‘t) for all k > 1 . These orders provide product
orders on the set of pairs of diagrams [o,t] , again dénoced by < and < . For pairs
of diagrams [o,T] and [o0',7'] we define degree [o0,t] = (|o|,|T]) ¢ Wx IN
and [o,t]*[0',%'] = [co',TT'] .
A tableau A on {1,...n} with shape o 1is a map A: o » {1,...,n} « The content
of A 1is the sequence of numbers CA = (ml,...,mn) where w, = ‘A_l(i)l . We
think of o as a set of boxes and A as a way of filling it with numbers between

1 and n . We will often denote A by a (in general not rectangular) matrix

(aij) with agq = A((1,3)) (4,3) € o . Example:

J 2|1 z] 12
o= (3,2,2) = A={2]3 =12 3
301 1

A bitableau is a- pair (A[B) of tableau on {1,...,n} of the same shape, in matrix
notation (a;|byy) with a3y € {1,..,n} (i,3) € 0 . For fixed i the
bitableau (ail"'aioilbil"'biai) of shape (oi) is named the i-th row of (A|B).
We use bitableaux to indicate products of minors of a matrix X = (X:Lj) in

RX = k[xij] , where k 1is a commutative ring and the xij are indeterminates,
1<1,j<n . First to a bitableau (al...ap |b1...bp) of shape (p) we assoclate
the minor involving to rows 31,058y and columns bl,..,bp . For an arbitrary
bitableau we take the product of the minors associated to its rows. Up to a sign the
element in Ry associated to a bitableau (AlB) does not depend on the order of the

rows of A and B. Since the monomials in the xij span Ry and xij is associated

to the bitableau (ilj), it is clear that the bitableau (AIB) of which A and B
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have strictly increasing rows indicate a set of generators for Ry as k-module. The

set of tableaux 1s partially ordered by the relation

A= (a <B=(b iff for all k and 2

1901, o 191, pes

Hct, eo| 1k, a jaab] < [{C10,3mew [10<k, by, <ab]

A tableau 1s called standard if its rows are strictly increasing and its columns

non-decreasing.

From a bitableau (A]B) = (a we form the single tableau

13°135 ¢4, peo

T alal
by ot blol
s(AlB) =| : , &= (o) .
a
bxl T e,
3 200

Now the order on single tableaux provides via s an order on bitableaux. A
bitableau (A[‘B) is called standard if s(A|B) is standard. The content of a

bitableau is defined as . Let RSX = Rx/ st, where st is the

Cearm ™ Csalm

ideal generated by the elements 1 <414, <n . The following proposition

xij—xji N
holds [4,section 5]:

PROPOSITION 1.1. The standard bitableaux form a k-free basis for RSX and each

bitableau can be written as a linear combination of standard bitableaux with the same

content that are later in the order. o

We will need this proposition in the proof of a similar result for our ring R .

Before we can state this result we have to define generators and an order on them.
Define a INz-grading on R by deg(xij) = (1,0) and deg(YiJ) = (0,1) . Then

Rsx = @ Rp,0) » Rsy = @ Ko,q) and R = Rgy.Rgy
PEN qE N
For (AIB) € R

of shape o and (C|D) e R of shape ¢ we associate to the pair

SX SY

of bitableaux [(A[B)],(C|D)] of shape [o,7] their product in R(l°| [<D S R.
»

From (3,prop. 1.3 1] follows that this product equals zero for al+11> n, 80 we

restrict our attention to the case :114--:1 < n . From each pair of bitableaux
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[CA|B),(C|D)] of shape [o,t] (with o+7, < n) , vhere A4,B,C and D has

strictly increasing rows, we can form the single tableau:

fql e unq

C?l cae ‘%uq

dil ces dlul

s[(A]B),(C[D)] = Sy e ey
1

11 0t Pl

b}l s b{cl

by e i

with 2 = 2(0) , q = |t| , ¥ =no-T 1 <1 <q and strictly increasing rows,

i
and such that {cil""civi} u {cil""ciui} = {1,..,n} =

1 <1i<gq.

- {dil""’diti} u {dil""'diui} for all

The order on single tableaux provides via s an order on each set of pairs of
bitableaux with fixed degree (and all rows strictly increasing). [(A|B),(C|D)] is

called standard if s[(A|B),(C|D)] is standard.

PROPOSITION 1.2. The standard pairs of bitableaux form a k-free basis for R

and each pair of bitableaux can be written as a linear combination of standard

bitableaux that are later in the order.

Proof. First we prove the second part of the proposition. It is an easy calculation to

prove:

LEMMA 1.3. let (A|B) , (A'|B') and (C|D) three bitableaux of shape o,o'

and T respectively. Assume that cl+11 <n and c{+11 <n, and

C(AIB) = C(A'IB') + Then

[(A[B),(C|D)] < [(A'[B"),(C|D)] amd [(C|D),(a|B)] < [(C|D),(A'|B")]. o

Fix (p,q) € n?. The set of pairs of bitableaux [(AJB),(C[D)], with shape [o,7]

such that deglo,t] = (|o|,|*|) = (p,q) and such that A,B,C and D are tableaux on
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{1,..,n} with strictly increasing rows, is finite. Therefore it is sufficient to
prove that each non-standard element in this set can be written as linear combination
of elements in this set that are later in the order.

So let [(A|B),(C|D)] be a non-standard pair of bitableaux of shape [0,T] 1in the
set mentioned above. For o +1:1 > n it defines zero, thus we may assume that

1

o+t <n . If (A|B) or (C|D) 1is not standard then we apply Proposition l.1 and
171

Lemma 1.3 and we are done. Now the only situation that remains 1is (in the notation

of above)

c see C

11 lpl

is not standard.

ajy e al"l/
Thus if (al"'allbl'“bl) and (cl...ckldl...dk) are the first rows of (A|B)

and (ClD) respectively, & = al and k = 1:1 , and {c1<...<cn_k} is the complement
of {cl,...,ck} in {1,...,:1} then there exists a 1 < r < & such that

N

-~ ~ t
3, > Cpaceesda > c.1 and a, < c - Since (Yij) (xij) 0 over R, it

follows from [3,prop.l.3.ii) that:

Et [(n(al)...u(ar)ar_’_l...al|b1...b1),({c1...cr_

1n(2r>...n(f:k)}°|dl...dk)] =0,

where superscript C stands for taking the complement in {1,2,...,n} and the sum is

taken over all cosets in

Symm(al,...,a € seee ,cn_k)/Symm(al,...,ar)XSymm(cl, eeeyC

r u—'k) *

Since [(al"'allbl"'bl)’(cl"'ckl dl"'dk)] is smaller than each other summand we
find an expression for it as linear combination of palrs of bitableaux that are
strictly later in the order. After multiplying with the other minors associated to
[CA| B),(C|D)] we find the desired expression for this element. This finishes the

proof of the second part of Proposition 1.2.

Before we proof the linear independence of the standard pairs of bitableaux, we recall
some generalities on the representation theory of GL(n,® , which we will need below.
Llet T,U and B SGL(n,Q) be the subgroups of diagonal matrices, the upper

triangular unipotent matrices and the upper triangular matrices respectively. For each
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diagram o with al < n there is an unique irreducible and polynomial representation
MG of GL(n,§) with highest weightvector - (with respect to B), It is well known
that diqud is equal to the number of standard tableau on {1,...,n} of shape

o, see [2] or [5]. Furthermore we denote by LP the one dimensional representation
of GL(n,@) with character (determinant)? , p e Z.

1 ~
L" =M .

(n)?

enough to do it for k = @ . We will show that diqu(

(Thus In order to prove the first part of Proposition 1.2, it is

2,2 = d , where (p,q) € ¥

and d 1is the number of standard pairs of bitableaux of shape [0,t] with degree
[0,7] = (p,q) . Note that d 1is the number of all standard tableaux of shape

BeHe.0.0 , where p = (n-tq,n-tq,...,n—‘: ,n—'rl) and o,t diagrams with

1

o] =p, || =q and o7 <n . Since in a standard tableaux on {1,.c0,0}

a row of length n can only be 1 2 ... n , we can replace p by
(n—-:k,n-'rk,...,n—-rl,n—w:l) with k = 2(t) = ¥1 .
From the second part of the Proposition 1.2, which we already proved, follows

di R < d . We will now prove the converse.
" %(p,q) P

From each pair of diagrams [o,7] with o+t < n we define the canonical

171
element
1 2 ... 01 1 2 ¢ n n-1 ...n—11+1 n -1 .. D=7 +1
coe -1 ... D= - eee -t +
y . 1 2 oy 1202 n n-1 n‘:2+l n n-1 n-t +1
[o,7] : . M L R . M :
1 . eee ax 1 2 Ux n n-l ... n—tkﬂ n n-1 ... n-rk+l
€ R <R L =2(c) and k = (1) .
(lo.l’l,cl) - ’ ( ) )
[¢]
[¢]
=1 implies k #0 .
’ BPEES Xlo,1)
[¢] 6

It is easy to see that k[a - is an U-invariant vector. For diag(t:l,...,tn) eT
’

we have
diag(cl""’tn).k[a,-z] =
2:%, 2.8 2% -2%, ¥, b -2%,
t ®eee’t e ®ees® . - ®eee® . eee .
€ t k[d,'r] € RGP k[c,‘t] ,
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where
= (n—tk,n-rk,n—tk_l,...,n-1l,n—11,ol,dl,...,cl,cl) ,
L = %0o) and k = 2(7) .

Thus in particular k[a - is a weight vector for T .
»

These three consecutive facts together imply that the @-span of GL(n,Q) -k[d <1
»

denoted by M[d _ is an irreducible representation. In fact
2
M[q ] 8L ls Mu and 2“:’1 is the smallest non-negative integer h such
s
h v v
that M[u,t] ® L° is polynomial. (cl+':1 < n implies S, 0 or Y 0).

But from that it follows that for

[o,T] # [o',7'] (cl+1: <n  and a'+-ri<n)

1 1 Mot * Moo -

Since GL(n,Q) 1is a linear reductive group, the sum I M taken

c R
[o,c] = "(p,q)
over all [o,t] with IO‘I =p, |t| = q and cl+'rl <n , is direct. Counting

dimensions yields dimQR(p,q) > d , hence the dimension equals d . =]

In the proof of Proposition 1.2 we have obtained a description of R as

G-module, which will be gathered in Proposition l.4 below.

DEFINITION. is _the k-span of all pairs of bitableaux with shape > [o,t]

A
[o,7]
is the k-span of all pairs of bitableaux with shape > [o,T] .

Alg,1)

PROPOSITION l.4. let k be a field of characteristic zero. Then

R=+® M[a - is a multiplicity free decomposition in irreducible components, the
’
sum is taken over all pairs of diagrams [o,7] with 61+1:1 < n . Furthermore
. - —z‘r’l
M = k-span of GL(n)°k = A Al =M
[o,c] T K7oPaR of CUIh(g o) = Ay o)/ Alg,) T M R L T

where ¢ = (D-Tk’“-Tk""’n_Tl’dl’Ul""’aﬁ.) , & = 2(0) and k = &(7) .

Proof. Since the representation theory for k = § and k an arbitrary field
of characteristic zero are actually the same [5], the proposition follows

immediately from the proof of Proposition 1.2. [=]
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We end this section with a lemma that will be useful in section 2.

LEMMA 1.5. M[c,@].M[o,r] = M[d’ﬂ (al+11<n) .

Proof. k16,01 516,51 = ¥[o,v] 1vPlies Mio,71 SM0,01 M 10,00

Now assume

Mo, S¥0,01™M0,71

Then

(Jo'],|'|) = degree[o',t'] = degree[d,4] + degree[s,t] = (|o],]|7])

thus
o' = Jo| =p and |t'| = |7| =q.

On the other hand M[o",t'] must be isomorphic to a direct summand of
"o,01 ®¥pp,0) -

Then

Mp, = M[u',r'] ®Lq , B' = (D-Tt'l,n-‘tc'l,...,n-'t',d{,di,-..,di) »

M‘L = M[&,‘r] ®Lq s, B o= (n-'rq,u-'l:q,...,n--cl)

and M[d 0] are polynomial representations by Proposition l.4 and M , is
»
isomorphic to a direct summand of M[d 0] @Mp , 80 p'2>p (cf. the
, =
Littlewood-Richardson rule [6]). Combining this with _|1'| = |1| ylelds

= 1! = g' = .
T ' . By symmetry o =0 thus M[a',-\:'] M[a,t] o

2. The G-invariant ideals.

From now on we assume that k 1is a field of characteristic zero. Let I[c .
»

01+11 <n , be the ideal generated by the submodule N By Proposition l.4

[o,%] ©

I[o ] is the minimal G-invariant ideal containing k The next
’

[o,%] °
theorem tells us how this ideal decomposes as a direct sum of irreducible

submodules.
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THEOREM 2.1, I; ) = Mige go) *

[e'<']2[0,7]

Proof. By lemma 1.5. we have M _E thus

to,71 = Mo,01M10,

Tovel ™ B Moyl ™ Rsx Rev ™Mo, 01 M 10,01 = Rsx ™o, 01 Fsy™Me,7] *

But in [1] it is proved that

sxMie,01 T @ Miar,e

and equivalently

R = .
st T @ Mg

Hence

Tor1 = @ Mgt @ My o=

M Al t
g'oo o lo',7']

@D
[o',7']2 [o,7]

by Lemma 1.5 again.

Remark. For o +'|:l >n we define M 0.

1 [o,7] ©

This theorem enables us to describe all G-invariant ideals in terms of diagrams.

DEFINITION. 1) Dy = {lo,71] cl+1:l>n} .

2) A set of pairs of diagrams D is called a D-ideal iff DoE D and if

[o,7] € D and [o',T'] _:_[o','r] then [o',t'] € D .

For a finite set {[o',7'],...[0",7"]} we denote by ([al,rll,...,[dm,rm])

the D-ideal Dy U {lo,7] | [o,7] > [ci,ri] for some l<i<m} .

By Proposition l.4 R has multiplicity free decomposition as G-module, thus
the same holds for each G-invariant ideal. Therefore an immediate consequence

of Theorem 2.1 is.

PROPOSITION 2.2, There is a l-1 correspondence between G-invariant ideals and

D-ideals given by:
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D a D-ideal +ID)= @ M
[o,t]eD lo,7]
I a G-invariant ideal + D = D
y U {lo,tl] k[U’ﬂeI} .
Furthermore this correspondence preserves containment and commutes with taking
intersections. o
By this proposition and the fact that the ordering < on pairs of diagrams
extends the ordering < follows that the sets
A = D M and A} = [:5) M
ag,T Tt 1
N R L CAC T A N R S L TR B
are in fact ideals. The next proposition tells us that A[c ] is generated
»
by certain product of minors of X = (xij) and Y = (Yij) .
PROPOSITION.
A = A *A =1 ®eeecl o1 LI D 4
(0,71 7 "o, 017 10,7] T T[Co) 0] [(oy),01" "[8,(5 )] (6, (x 1
where & = 2(0) , k = (7) .
Proof. A = (] M, , _,, » so the first identity follows by
= Tlotl (g g, L970F']
lemma 1.5. The identity
A = 1 *evenl
[o,9] [(s)),0] [(ay), ¢}
is one of the results on Rgy proved in [1]. =}

Let D be a D-ideal, we will say that D is

prime 1f [o,t]*[o',t'] € D 1implies [0,7] € D or [o',t'] €D

o
primary if [o,t]°[c',7'] € D dimplies [o,%] € D or [o',%'} €D

for some m

radical 1if [u,-r]meD for m implies [o,7] €D .

m
For any D-ideal D we write /D = {[c,‘\:] | [o,e] €D for some m} , this is

again a D-ideal.
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Before we show that these notions correspond to the usual ones we describe

these D-ideals in detail.

PROPOSITION 2.3.

1) The prime D-ideals are ([(p),¢],[¢,(q)]) with p+q < n+2 .

2) The radical D-ideals are ([(pl)’(ql)]""’[(pm)’(qm)]) , with
pl<1:2<...<pln and ql>...>qm.
3) AD-ideal D is primary iff
a) ptq < n+2 , with p = min[al[(a),olmeb for some m} and
q= min[b[[@,(b)]msb for some m} .

b) [(n'q+2).0] ’ [0;(“"?“"2)] €D

c¢) For each [o,t] 1in the (unique and finite) minimal set of generators

for D holds o, » p and rk>q, L= 2(0o) and k = 2(t) .

2

Proof. 1) A dlagram [o0,T] can be written as
[CopseleceeelCap), 0l [4,CT )] eueee[0(T )],
X = (o) and k = &(7) .

Thus it 1s clear that a prime D-ideal D must be of the form D = ([(p),¢],[¢,(q)]) -
Then [(p-1),(q-1)] = [(p-1),¢]*[¢,(q-1)] § D implies (p-1)+(q-1) < n ,

thus p+q < n+2 . Since c!1+*:1 > n implies cl > p or 11 > q the converse

1s also clear.

2) Let [o,T] €D, D a radical D-ideal. [(ql),(-rl)]m > [0,t] for m

suffciently large, thus [(cl),(tl)l € D . Then it 18 clear that D must be

of the stated form, whilst the converse is trivial.

3) Let D be a primary ideal. a) and b) follow by the same type of arguments

used in 1). Now let [o,t] € D . We can write [o,1] = [01,11][02,12] y
with [al,-:l] of the form as indicated in <¢) and qf < p and -:% <q.

Then [az,-rzlm [.' D for all m , thus [01,1:1] €D .

The converse is a straightforward calculation. o

Remark. 1) For D a primary D~ideal we have in the notation of this

proposition /D = ([(p),é1,[6(q)]) .
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Remark. 2) Each radical D-ideal D can be written as intersection of prime

D-ideals: For
D = ([(p))s(a)]seees (R )50 ) )
as in the proposition we can write
D= ([(pl)m],[%(nﬂ)])n([(pz).ﬂ,lm(ql)])n ese ([(n+1),¢].[0,(qm)l) .

With the help of the identity ([(p),¢],(¢,(q)] = n ([(p"),¢1,[$,(aD]D) ,
where the intersection 1s taken over all p' < p , q' € q and p'+q' = n+2
if p+q > n+2 , we can refine this intersection to an irredundant intersection

of prime D-ideals.

PROPOSITION 2.4. The 1~1 correspondence of Proposition 2.2. preserves the

notions prime, primary and radical.

Proof. Since k it is clear that the transition

[U.T].k[a',t'] = k[dd','t‘t']

of G-invariant ideals to D-ideals preserves these notions.

In order to prove the converse we need the following.

LEMMA 2.5. let ¢ be the projection M[U,T] ®M[c',1'] + M[o’d',t‘t'] , with

max(a,,01) + max(t,,7}) < n, then
$(E®g) =0 implies £ =0 or g=10 .

Proof of the Lemma. By Proposition l.4 we can write

—2¥1 -2‘:’1
L
Mo, =M, OL P Mgt ©

and

—2(¥l+¥{)

M ®L

wv = Moo, ve]
all three irreducible and polynomial representations of G , such that

*2(¥1+¥i)
¢ = o@L : Mu®Mv*Mpv
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is in fact the projection of Mu®Mv on its Cartan component (that is the
irreducible component in Mp@}lv that contains the highest weightvector). It

is thus the same to prove that ¢(f @) = 0 implies £ =0 or g =0 .

Let v e Mp' and w € Mv be highest weightvectors, f € MI* , £# 0 and

g € Mv » 8 #0 . There is an open subset 0 U, where U 4is the subgroup of
upper triangular unipotent matrices, such that for all u € of uef = au'v +
+ (terms of lower weight) with a, # 0 . Similarly there is an open subset

g £
+ (terms of lower weight) and a # 0 . But v 8 w 1s the highest weightvector

o, for g . Thus for u € 0 ﬂOg#D uf Qug = asv @w +

in Mu ] Mv , thus ¢(v @ w) # 0 . Then ¢(uf 2 ug) # 0 and also

(f Bg) #0 . (=]

Furthermore we define a total order <J. on pairs of diagrams by [o,T] <9. [o',<" 1
iff o 1is lexicografically smaller then o' or if o = o' then T 1is

lexicografically smaller then <t' . This order <, 1s an extension of the

2
partial order < . Clearly <£ satisfies the multiplication rule: 1if

[o,7] <y [o'57']  then [o,%]-[c",7"] < [o',7']+[d",7"]
for any [o",1"] .
Now we go on with the proof of the propostion.

Let D be a D-ideal, I = I(D) and write

€= © M. so R=161C.
[o,T]1¢D ’

First assume D 1is a prime D-ideal, say D = ([(p),%],[$,(q)]) ptq < n+2 .

In order to show that I 1is prime, it is sufficient to prove for f,g e IC

and £ #0, g# 0 that feg g I . We can write

f = and g = E

1 = g
fo,s1gp [ (o, c)¢p 7]

with f . From Proposition 1.2 it follows that

(0,718 (0,71 © M[o,7]

f[U)T].g[U',‘F'] € A[Ud',‘t‘r'] = M[Q-n’.:n] .

]
[¢",1"]>[00',7T"]
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Now let [o,t] and [o',T'] be minimal in the order <£ such that

f[a,t] #0 and g[d,’t,] # 0 respectively. Using that <); extends < and

the multiplication rule holds for it ylelds that feg € A and in

(oo, tt']

fog = By o on > he o oo Mo w uy s
&7 (on, o oet,ver] 107 (e",%"] € "[o", "]

the only contribution to h comes from f . Since

lo,) 8o, "]

C ) 1
f[a,r] and 3[0',1:'] € I° we have 09,59] < p and Tty < q thus

[oo', T3]

[oo',7T'] ¢ D and M #0 . Then h # 0 by Lemma 2.5, so

(oo, "] [oo7,t1"]

fg § L.

Now by Remark 2) to Proposition 2.3 and Proposition 2.2 it follows immediate
that the radical D-ideals correspond to the radical G-invariant ideals.
Finally let D be a primary D-ideal. Remark 1) to Proposition 2.3 says that
/5 = ([(p),81,[0,(a)]) for some p,q with p+q < 2 . Because /I D I(/D) oI
and I(/l-)) is prime it follows that /—I = I(v’l-)) . In order to show that I
is primary it is sufficient to prove for f with f ¢ /I and g€ 1© s

g #0 , that feg f I . We can write

R L R U

and since £ { /T there is a minimal [0,t] with respect to the order <x

with al <p, %, <q and £ #0 . For g we choose [o',T1'] in the

1 [o,7]

same way as 1s in the case where D was prime.

From Proposition 2.3 3) follows di < n-g+l , on the other hand we have

T < q-1 , thus c:i+1:1 <n . Simllarly we find ti+dl <n . Then we may

' . # . As in the case D
conclude that [oo',Tt"] fDo and thus M[aa,’_“,] 0 n

prime it follows that

#0 in feg= §

h .
(0, 7] [o,7]

h[uo',ﬂ:']
Because [c!,'l:]m ¢ D for all m and [o)t'] ¢ D we have [oo',tt'] D

and thus f~gf I. B
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We now want to decompose each G-invariant ideal as finite intersection of
primary ideals. By Proposition 2.2 and 2.4 it is equivalent to give an

algorithm for D-ideals.
Let D be an arbitrary D-ideal. Since R 1is Noetherian, D 1is finitly

generated say D = ([al.rl],...[um,tm]) .

If for example al = 511 3] cu and 11 = 1” u 1'12 » then [o,t] 2 [61,11]

if and only if 11

[0,7] = [dn.r ] and > (o'2,12) » 8O

[611 11

D= ((oth ey, 162,420, e 6% 20 0 (1012,5220, 102,720, -0 165, 10T)

The first step of the algorithm is to write each oj' and 1:1 as union of
diagrams of the form (p)® = (p,...p) , a times p , and then, by repeating
the argument, to decompose D as intersection of D-ideals of type

b

' 3 2s 1 bt:
D' = ([(p)) “50L,eees[Cp) 2,01, [00(a)) “Lheen,[00(a) 1)

with pl<...<ps,q1<...<qt,al>...>a8 and b1>"'>bt'

It is an easy calculation to see that

D' = [(p)),0],[4,¢aD]) n (D', [6,¢a-p +1)]) n (D', [(m~q +1),0]) .

By Proposition 2.3 and Remark 3) we know for the first term of the right hand
side a primary decomposition. The second step of the algorithm is to write the
other two terms as intersection of primary ideals. We claim that
(0% [o,a=p #1)]) = N [(p,+2),01,D", [¢,(n+2-p ~2) ])
n—p1+1>1>1
and is a primary decomposition. Of course an analogous result holds for the

third term.

The inclusion c 1is trivial, on the other hand if [o,7] f (D',[Q,(n-p1+1)]) ,

is in the intersection then either 9 > p1+l. for all L or o, = p1+1. and

1

2 > n+2—p1—(x+1) , 80 in both cases dl+1:1 > o+l thus [o,7] € D0

contradiction, Now fix & and define p and q as in Proposition 2.3 3),

sp,

then
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PHa € (p)+) + (n+2-p -2) € n+2 , and n-p+2 > a+2-p +L  and  n=q#2 > p+L

so a) and b) of Proposition 2.3 3) are satisfied, while c¢) 1is trivial. Thus
the decomposition is primary. To refine a primary decomposition into an
irredundant decomposition the next result may be useful to intersect primary
ideals that belong to the same prime ideal:

(', e ns 16%,)) 0 (135,310,000, (85,351) = (10t 3,200 7))

1<i<s
1< 34t

Now we will describe the symbolic powers of G-invariant prime-ideals. Let

Ip,q = WP, 0L [0,(D]) with prq < o2 .

The m—th symbolic power of Jp q 1s defined as
’

J(m)-{feRﬁast such that sef ¢ J° } .
P>4 Psq P>q

PROPOSITION 2.6. The D-ideal D corresponding to ngi is generated by
»

[¢,(n-p+2)] , [(n-q+2),¢] and all [o,t] with vp(d) + vq(t) =m.

Proof. Let D' be the D-ideal corresponding to

2 a1 +I L o B = 7 a .
pa ™ (1, e 10,017 7 L Tiy o Tienco1 T B Aot oty

Since k implies

m
loot,xe'] ™ “1o,71 (0", e'1 © Ypia 22 *o,qf Ypiq

(m)
k[a'.r'l € J1>.q

[0,7] € D . This gives immmediate [(n-q+2),¢] and [¢,(n-p+2)] € D, and

it follows that [(p-l).(q—l)]d- [0,T] € D' dimplies

taking d sufficiently large, that [o,t] € D if yp(o)+yq(1) =,

These elements span a D-ideal D" . It is easy to check that D" is primary.

Since D> D" > D' and Jimi

is the smallest Jp q—primry ideal containing
’ ’

J: q it follows that D = D" . o

We conclude with the description of integral closures of G-invariant ideals.

First we state a special case:



2010 RUITENBURG

PROPOSITION 2.7. The integral closure of I[cr ] is A[d’ €]
? ’

Proof, In [1] it is proved for the ring RSX that A_= d'-fu M[a',M
™ RSX°M[0'°] in Rgy - Because I C A  this

implies A‘: = Ic. z—-l for m large enough. After multiplying with R® we

is the integral closure of I

m o o1
8t A15,01 ™ 0,01 4(0,0]

large enough. Because A[a,’r]- A[c,@]“‘[@,t]

we get for m large enough A™

« Similarly A" for m

o1
[6,1" Tro,71"% 10,71 °
ad 115 01" Yo, 01 0,7
o1

‘A[a 0" But then, see [7],
>

lo,e1” Y[o,7)

A[o,r] is integral over 1[6’11.

Aol

sufficient to prove that each

In order to prove that is the integral closure of it is

Lio,m)

i [a',r']}[o,t] f[a"T'] ro f[d"t'] BNCIRD

and almost all zero, cannot be integral over I[c <
»

fm-l

Suppose f 1s integral over L thus fm+al +...+am_ f+am-0 for some

1[0,1 1

a; € Ijic ] i=1,...,m. As in the prove of Proposition 2.4. there is a
>

T Al
minimal [o',t'] in the order <£ with f[c',t’] +#0 ,

exists a k such that yk(o') < yk(o) or yk(s') < yk(vx) . Then the only

furthermore there

contribution in M of the sum fm+alfm_l+...+:«.\m comes from

[o',s']"

f“[la, <] and is non-zero by lemma 2.5, contradicting the assumption.

i
We will now define the integral closure of any D-ideal and prove that it
agrees with the same notion on G-invariants ideals. As is [2] we order the B
by the definition (al,...,an) < (bl,...,bn) iff a, < bi for all 1i.
Define maps Yy and Y, om the set of pairs of diagrams [o,T] with
o+7, < n into ® by v [o,7] = (’(1(0),...,Yn(d)) and
Yz[gar] = (Yl(f),---ﬂn(f))-

We define the integral closure D of a D-ideal by

D= {[0,1:] lyl[a,':] > x for some x in the convex hull of yl(n\no)}n

{{a,7] ]yz[c,tl >y for some y in convex hull of YZ(D\DO)} .
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PROPOSITION 2.8 Let D be a D~ideal. The integral closure of I(D) 4is
D).
Proof. Using A = A A th
(o, 7] (0,61 40,1] * the proof runs along the same line as
the proof in [2] of Theorem 8.2. o
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